
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 13,917-936 (1991) 

MAGNETOHYDRODYNAMIC STEADY FLOW 
COMPUTATIONS IN THREE DIMENSIONS 

SEUNGSOO LEE* AND GEORGE S.  DULIKRAVICH 
Aerospace Engineering Department. The Pennsylvania State University. University Park, PA 16802, U.S.A. 

SUMMARY 
A complete three-dimensional mathematical model has been developed governing the steady, laminar flow 
of an incompressible fluid subjected to a magnetic field and including internal heating due to the Joule effect, 
heat transfer due to conduction, and thermally induced buoyancy forces. The thermally induced buoyancy 
was accounted for via the Boussinesq approximation. The entire system of eight partial differential 
equations was solved by integrating intermittently a system of five fluid flow equations and a system of three 
magnetic field equations and transferring the information through source-like terms. An explicit 
RungeKutta time-stepping algorithm and a finite difference scheme with artificial compressibility were 
used in the general non-orthogonal curvilinear boundary-conforming co-ordinate system. Comparison of 
computational results and known analytical solutions in two and three dimensions demonstrates high 
accuracy and smooth monotone convergence of the iterative algorithm. Results of test cases with thermally 
induced buoyancy demonstrate the stabilizing effect of the magnetic field on the recirculating flows. 
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INTRODUCTION 

It is a well-known fact that a magnetic field has a strong effect on fluid flows. For example, a 
Poiseuille velocity profile flattens owing to the applied magnetic field. In the presence of the 
magnetic field the strengths of vortices produced by thermal instability can be reduced. Engineers 
have used the properties of the magnetic field in applications ranging from flowmeters to space 
processing. 

Despite its importance in engineering aplications, only a few attempts132 have been made to 
simulate magnetohydrodynamic phenomena numerically. However, these works were restricted 
to two-dimensional problems. In the present paper a complete three-dimensional numerical 
simulation of steady, laminar, magnetohydrodynamic incompressible flow was performed, 
although the numerical procedure can be extended to unsteady and compressible flows. The first 
part of this paper presents a mathematical model of magnetohydrodynamics. The electric field 
vector is eliminated from the Maxwell equations using Joule's law. This results in magnetic 
transport equations which consist of three partial differential equations of mixed 
hyperbolic-parabolic type. These magnetic transport equations are integrated along with the 
Navier-Stokes equations. The second part of the paper presents the numerical method for solving 
the system of governing equations. The system of equations is split into two systems of equations: 
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the system for the fluid flow field and the system for the magnetic field. Such a splitting approach 
was used by a number of researchers to solve the Navier-Stokes equations with the k--E equations 
of t u rb~ lence .~ ,~  One of the advantages of this approach is that additional equations (turbulence, 
magnetic field, etc.) can be included without modifying the existing basic flow solver. On the other 
hand, a slightly adverse effect on numerical stability could be expected as the result of partially 
‘decoupling’ the global system. 

A stability analysis of this approach was performed in conjunction with an explicit 
Runge-Kutta method. The stability analysis was performed by considering an equivalent 
multistage scheme similar to the split Runge-Kutta procedure. Stability results show that the 
split procedure does not change the stability of the global scheme significantly. As long as the 
CFL condition for each individual system is separately satisfied, the stability condition for the 
split approach is satisfied. 

GOVERNING EQUATIONS 

After ignoring the electric displacement vector, Maxwell’s equations’ can be written in Cartesian 
tensor notation as 

Hi,i=O, (1) 

(3) 
P 

&ijkEk,  j = - -  H i , t ,  
C 

where &ijk is the permutation symbol and commas designate differentiation. Here H i  and Ei are the 
components of the magnetic field vector and the electric field vector, while c, p and t are the speed 
of light, the magnetic permeability and time, respectively. The equations are cast in Gaussian units 
and the repeated index denotes summation over the index. Joule’s law is given by 

J ~ = u  E i + ; ~ i j k ~ j H ,  (4) 
( P  ) 

where J i  and ui are the components of the electric current density vector and the fluid velocity 
vector respectively. The coefficient u is the electrical conductivity. 

With the aid of the Boussinesq approximation6 the Navier-Stokes equations for the incom- 
pressible electrically conducting homocompositional fluid flow including buoyancy force are 
given by mass conservation, 

u. 1.1 .=o 9 (5)  

momentum conservation, 

(6) 1 r l  P 
U i , t  + ( V i V j ) ,  j = - -  p ,  i +- U, j j  +- Eijk J j  H k -  a&( T- Tc), 

P P  CP 

and energy conservation, 

where g i ,  p, p and Tare the gravity components, the fluid density, the sum of hydrodynamic and 
hydrostatic pressure and the temperature respectively. Here q, a, IC and cp are the coefficients of 
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viscosity, thermal expansion, thermal diffusivity and specific heat respectively. The third term on 
the right-hand side of the momentum equation is the Lorentz force due to the magnetic field. The 
last term on the right-hand side of the momentum equation is the thermal buoyancy force. Notice 
that the viscous dissipation terms are neglected, while the Joule heating is included in the energy 
equation in accordance with the Boussinesq approximation. 

Eliminating E,  between the Maxwell equations (1)-(3), we have the so-called magnetic 
transport equation 

From the definition of the electric density vector, equation (4), and the vector identities, the 
momentum equation (6) can be written as 

where the combination of hydrostatic, hydrodynamic and magnetic field pressure is 

W i H j  p * = p + - .  
8a 

For convenience the superscript asterisk will be dropped. 

NON-DIMENSIONALIZATION 

It is desirable to non-dimensionalize the governing equations in order to simplify the study of the 
relative importance of each physical phenomenon involved. The following non-dimensional form 
of the governing equations is obtained 

vi,i=o, (1 1) 

1 Gr 
= - p p , i + - v .  . . --e.d,  Re2 ' V i , t +  ( vivj-- RmRe Re b J J  

Here 8 is the normalized temperature, (T-  T,)/AT, and AT= Th- T,, where Th and T, are two 
reference temperatures. The unit vector in the direction of the gravitational vector is designated 
as ei. The term due to Joule heating becomes 

Ec Ht2 
& m =--- Rm2 Re &ijk &ilm Hk,jHm, 1 
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and the non-dimensional numbers are given by 
.J 
"I Eckert number Ec=-  c,AT' 

Grashof number 

Hartman number 

411p0v1 I ,  
Rm=RePm=- 

c2 ' Magnetic Reynolds number 

Hydrodynamic Reynolds number Re=-, PVJI 
tl 

Magnetic Prandtl number 

v Prandtl number Pr =- 
K 

where the subscript 'r' designates reference values. 

NUMERICAL ALGORITHM 

Equations (1 1)-( 14) represent a global system of highly coupled non-linear partial differential 
equations. For simplicity of computer programming the system is split into two systems. 
Equations (1 1)-( 13) constitute the first system and equation (14) constitutes the second system. 
Each system is integrated by the explicit Runge-Kutta time-stepping method' in an alternating 
manner. 

After transformation to generalized curvilinear non-orthogonal co-ordinates, the systems of 
governing equations can be written in fully conservative form as 

aQ aE aF dG 
-+-+-+-=P+D. 
at a t  av ay 

For the flow field part of the global system the solution vector Q, the flux vectors E, F and G and 
the source vector D are given by 
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where J = a ( t ,  q, [ ) /a(x ,  y ,  z )  is the Jacobian determinant of the geometric transformation from 
x, y, z into 5, q, [ computational space. Here 

Ec Ht2  J 
Rm2 Re d ,  =- (A: + A ;  +A:), 

where H I ,  H ,  and H ,  are the components of the magnetic field vector in Cartesian co-ordinates 
and 

The physical viscous dissipation term is transformed to 

where 

gij= vx: vx;, 

S=diag . ( 0,-,-,- i e  Le R1e’ - P r i e ) .  

The contravariant components U, V and W of the velocity vector are related to the velocity 
components u, o and w in the Cartesian system by 

Similarly, the contravariant components H c ,  d, and d, of the magnetic field vector are defined as 
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In order to integrate the system simultaneously and obtain a time-asymptotic solution, an 
artificial compressibility* term a(p /PJ) /a t  is added to the solution vector, resulting in 

Q=L[ PIP i], 
J 

For the system of magnetic field equations the solution vector Q, the flux vectors E, F and G 
and the source vector D are given by 

Q = i [  r:], E=+[ H, H 2 U - v H , ] ,  u-uA, 

H3 U- wH, J 
H3 

.=A[ J :::!3], D=O, 

where I is the identity matrix of rank three. 
The Runge-Kutta time-stepping method’ given by 

Qo = Q‘, 

I S=- 
Rm’ 

AQk= --UkAtRk-’, k= l ,2 , .  . . , K, 

Q ~ + ~ = Q ~ + A Q K  (27) 

was used in the time integration of both systems. Here the residual vector is defined as 

The last term of the residual vector is the fourth-order artificial di~sipation,~ where 6 is a user- 
specified small parameter and At is the time step. For the four-stage (K = 4) Runge-Kutta method 
t l k =  1/4, 1/3, 1/2 and 1 respectively. 

BOUNDARY CONDITIONS 

The system of flow field equations is characterized by its hyperbolic nature. Therefore the 
boundary conditions have to be applied by considering the characteristic directions. The 
eigenvalues of the Jacobian matrix of the flux vector E are 

L=diag(U-a, U+a, U, U ,  U), (29) 

(30) 

where u is the equivalent speed of sound, 

a=J[U2 + P ( ~ E  + c,” + c~) I .  
At the inlet boundary one of the eigenvalues is negative. As a results, four boundary conditions 
should be imposed there. In this study the incoming velocity components u, u and w and the 
temperature 0 are specified. The pressure p is computed from the characteristic equation. At the 
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exit boundary one boundary condition should be imposed. We specified the pressure, while the 
velocity components and the temperature were obtained by integrating the characteristic 
equations. 

Premultiplying the 
equations by the similarity transformation matrix M; ' (in the {-direction), equation (27) results 
in the characteristic form of the equations. The equation corresponding to the negative eigenvalue 
is to be selected at the inlet., while at the exit the equations corresponding to positive eigenvalues 
are chosen. This selection procedure can be thought of as a matrix operation and we designate the 
operator as L. If the boundary condition is given by a, then 

The application of the boundary conditions is given as follows.'o* 

or 

and equation (32) is added to the transformed selected equations, that is 

At the inlet plane 

L=diag(l, O,O, O,O), 

n=~o,u-up, V - ~ , , , W - W p , e - e p l ~  
(34) 

(35) 

At the exit plane 

L=diag(O, 1, 1, 1, l), (36) 

(37) 

so that an/aQ = diag (BJ ,  0, 0, 0,O). The subscript 'p' denotes the prescribed value and the 
superscript T designates the transpose of a vector. Along a solid wall the velocity components 
were set to zero. The pressure was deduced from the normal momentum equation, while the 
temperature was either specified or extrapolated depending on the boundary condition type 
(Neumann or Dirichlet boundary condition). 

The system of magnetic field equations is also of hyperbolic type in time. The eigenvalues of the 
Jacobian matrix of this system are L=diag(U, U, 0) in the 5-direction. At the inlet plane, 
therefore, two components of the magnetic field vector are specified, while the axial component 
H, of the magnetic field vector is evaluated from the characteristic equation. The transformation 
matrix for the magnetic transport equations is given by 

= [b -Pp, 094 0, 0lT, 
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k12 = <3 - r x  r y  9 k23 = 5: - r y  5, t k3 1 = 1 - 5 z 5 . x ~  kl 23 = kl 2 + k2 3 + k3 1 Y (39) 

L=diag(l, l ,O),  (40) 

Q = [ H , - H , , ,  H3-H3,,0]T. (41) 

At the exit plane all three variables are updated by integrating the governing equations. 
Let ( ) denote a jump across the boundary. If the wall is a perfect conductor, the tangential 

component of the magnetic field experiences the discontinuity but the normal component should 
be continuous: 

n x (E) =O, n*H=O. (42) 

(H)=O. (43) 

If the wall is a perfect insulator, the boundary condition takes the simpler form 

STABILITY ANALYSIS 

Consider a model system of equations 

aQ aQ -+A-=O. 
at ax (44) 

The Runge-Kutta method with the split approach can be thought of as a 2K-stage multistage 
method, that is 

for k = K +  1,. . . , 2K, 
Q k = Q K - @ t [  a:l a22]- 0 aQk-l 

ax 

with 

+ K  = (45) 
In other words, the flow field variables (p, u, u, w )  are updated first via a four-stage Runge-Kutta 
scheme. This was followed by the update of the magnetic field vector components (Hl, H2, H3) 
also via a four-stage Runge-Kutta scheme. Thus the variables are not updated individually in a 
predetermined order as in the case of certain pressure-velocity field update codes. If the 
provisional amplification matrix G, for the first K stages of the Runge-Kutta scheme is defined as 

Qk = Gk Qo, (46) 

e k = I - f % k f k R I G k - 1  for k = l , .  . . , K ,  (47) 

then we have the recursion formula for the provisional amplification matrix 

where 
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Similarly, define the provisional amplification matrix e k  for the second K stages as 

Gk=I-tlkAtm,Gk-1 for k = K + 1 , .  . . , 2 K ,  (49) 

where 

sin(icAx) 0 
€K =I, 

m2=i  Ax [a,,  a:2]* 

The amplification factor of the Runge-Kutta method for the split approach can be found as 

G = G&ZK= mi) m,), (51) 

where P designates a polynomial. Thus the amplification matrices for the split approach and the 
unsplit approach are equal 

Gsplit=~(ml, m2)=Gunspiit* (52) 

In general, if we split the system of equations into a number of systems and if the stability 
conditions for each system are satisfied, then the complete system remains stable. It should be 
pointed out that in principle it should be possible to use different time steps for each set of 
equations. Nevertheless, determining and optimizing two separate time steps for the two systems 
of equations was not attempted in this work. 

COMPUTATIONAL RESULTS 

Computer codes that Ne have developed, although allowing for arbitrary configurations, have 
been tested for accur :y against simple flow problems for which analytical solutions are known. 
The first test case is the two-dimensional Hartman flow, which is equivalent to the Poiseuille flow 
in fluid dynamics. An H-type orthogonal grid of 50 x 20 cells was used in this computation 
(Figure 1). The length of the channel was 15 times the half-height of the channel. The y- 
component of the magnetic field H, on the solid walls was kept constant. As a result of the 
Lorentz force, the velocity profile is flatter than the velocity profile without the magnetic field. 
The hydrodynamic Reynolds number Re based on the average velocity and the half-height of the 
channel was Re= 10, while the magnetic Reynolds number was Rm= 10. The Hartman number 
based on the vertical uniformly imposed magnetic field and the half-height of the channel was 
H t  = 5. An artificial compressibility coefficient /3 = 10 was found through numerical experimenta- 
tion to give the best convergence. All computer runs were performed with CFL = 2-8, which is the 
maximum allowable value for this type of explicit algorithm. Different values of /3 have been 
shown to influence only the convergence rate.” 

In this computation the influence of the buoyancy force was neglected. Therefore the energy 
equation was decoupled from the rest of the equations. The imposed inlet velocity profile was that 
of Poiseuille flow. Since both Reynolds numbers are small, the flow develops fully over a short 
distance (Figure 2). The pressure gradient becomes constant near the exit. Figure 3 compares the 
computed velocity profile with that of an analytical solution.’ In Figure 4 the computed induced 

Figure 1. H-type computational grid used for two-dimensional Hartman flow 
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(A) Isobar contours 

(El) Velocity vectors 

@) w 
Figure 2. Solutions of two-dimensional Hartman flow 

Figure 3. Axial velocity component at the exit (two-dimensional Hartman flow): upper curve, inlet velocity; lower curve, 
computations; circles, analytic solution 
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Axial Ccnnponent of Magnetic Field 
I I I I I 

927 

I I I - I 
0.0 0.5 1.0 
W 

Figure 4. Axial magnetic field component at the exit (two-dimensional Hartman flow): curve, computations; circles, 
analytic solution 

Convergence H i s t o r i e s  
I I I I 

I I I 
0.0 2000.0 4000.0 6000.0 8000.0 

Number of Iterations 

Figure 5. Convergence history (two-dimensional Hartman flow) 
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Figure 6. Computational domain for threedimensional Hartman flow 

Figure 7. Inlet velocity profile 

axial component of the magnetic field is compared with the analytic solution, showing excellent 
agreement. The relative error compared to the analytic solution is about 0.88% for the axial 
velocity component and 0.04% for the axial component of the magnetic field. The convergence 
history of the test case is shown in Figure 5. The code runs at 14 ps per grid point per iteration on 
the Cray I1 computer. 

The next test case is an equivalent Hartman flow in three dimensions. The computational 
domain was discretized with 50 x 20 x 20 rectangular clustered cells (Figure 6). Both hydro- 
dynamic and magnetic Reynolds numbers were 10. The value of the artificial compressibility 
coefficient was #?= 10. Figure 7 shows the prescribed inlet velocity profile, which is a fully 
developed laminar flow profile without the magnetic field. Carpet plots of the analytic and 
computed x-component of the velocity vector are shown in Figure 8. The maximum relative error 
of the computed solution is 0.73%. Figure 9 shows the analytic and computed x-component of 
the magnetic field. The computed solution deviates by less than 0.74% from the analytic solution. 
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(A) A ~ I y t k  d u b  (9) canputed so~ution 

Figure 8. Axial component velocity profile 

(A) Analytic solution (B) Computed solution 

Figure 9. Axial component of the magnetic field vector 

For completeness, the analytic solution13 of the three-dimensional Hartman flow is given here: 

L=113 u 4 b  (--- Re k  ̂ { 1 - cosh [ H t  ( Y a- l)] sinh (z) sinh- (:) 
sin(nm/b) 

- cosh (z) sinh [ 7 (5 - I)] sinh - (:) ] n3 (53) 
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(A) Isobar conIours 

(B) Velocity vectors 

@) y/Ho 

Figure 10. Solutions of three-dimensional Hartman flow (z/a =03) 

(54) 

The HI -component with the given H, -component is 

E=p(a) H, 4 b 2 R m R e  Ht k  ̂"odd 'f { 1 -sinh [F (5- I)] sinh (z) sinh- ' (:) 
-sinh (::) - srnh . [T - (i - - 1  )]Sinh-l ( , )}s in(y/b) .  

Here a and b are the width and height of the duct respectively, while 

( 5 5 )  
1 ' H C O S ~ ( H / ~ ) - C O S ~  ( H t / 2 )  

Re sinh ( H / 2 )  

where the hydrodynamic and magnetic Reynolds numbers, the Hartman number and the 
normalized pressure gradient are given by 

Re=-, P a v a  k = - -  H t = p a H ,  /( &), Rrn=-' -. (56) 
- a a p  4npaua,a 

tl pu,'; ax' C 
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Figure 10 shows the pressure, the developing velocity profile and the axial and vertical 
components of the magnetic field vector normalized with the applied magnetic strength along the 
vertical midplane (z/a=0.5). Both flow field and magnetic field develop within two duct 
heights downstream from the inlet. The convergence history is plotted in Figure 11. For this case 
the code was executed at 15 ps per grid point per iteration on the Cray Y-MP computer. 

Convergence Histories 
I I I I 

Number of Iterations 

Figure 11. Convergence history (three-dimensional Hartman flow) 

yb-x 0 

d 
g (gravity) and r(imposed) 

Cold 

Hot 

Figure 12. Closed container: computational grid of 60 x 30 cells 
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Isobars (without magnetic field) 

Isobars (with magnetic field) 

Figure 13. Isobar contours 

Isotherms (without magnetic field) 

Isotherms (with magnetic field) 

Figure 14. Isothermal contours 



Streamlines (with magnetic field) 

Figure. 15. Streamlines 

Figure 16. Lines of forces 

Convergence Histories 
1 I I 1 

-3.0 1 

Number of Iterations 

Figure 17. Convergence histories 
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The next example is the two-dimensional B6nard cell problem under the influence of a 
magnetic field. The imposed magnetic field is parallel to the gravitation. To study the relative 
influence of the magnetic field, the computations were done both with and without the applied 
magnetic field. The Hartman number was H t  = 5 and the Grashof number was Gr = 3000, with 
the bottom wall hot, the top wall cold and the side walls thermally insulated. Since there is no 
reference velocity, the reference velocity was obtained by equating the magnitude of the buoyancy 
term to that of the viscous term.I4 An orthogonal grid of 60x30 cells was used in this 
computation (Figure 12). An artificial compressibility coefficient f l=  1 was used for both com- 
putations since this value was found to give the best convergence rate. Both the magnetic Prandtl 
number and the hydrodynamic Prandtl number were unity. Although no artificial dissipation was 

A 

t 1 
B 

((;I C 

Figure 18. Interaction of a thermally induced flow and a strong magnetic field with H t =  10: A, isobars; B, isotherms; 
C, magnetic force lines; D, streamlines 
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added, smooth solutions were obtained. The pressure along the solid wall was computed from the 
normal momentum eq~at ion.’~ 

Figure 13 shows isobar contours for computations with and without the applied magnetic field. 
As can be seen, the usual boundary condition for pressure, ap /an  = 0, would have given erroneous 
results both with and without the influence of the magnetic field. The isothermal contours for 
both cases are plotted in Figure 14. Figure 15 represents the streamlines for both cases. With the 
applied magnetic field the strength of the vortices was weakened and the cells were elongated, 
which was predicted by ChandrasekhaP through a hydrodynamic linear stability analysis. 
Figure 16 depicts the lines of magnetic forces. They would be straight vertical lines without the 
flow induced by buoyancy. Figure 17 shows the convergence histories for both cases. It is 
noticeable that the convergence rate for the case with the applied magnetic field is much slower 
than without the magnetic field. It was found that with a Hartman number of 10 the circulatory 
motions from the thermal instability were damped significantly (Figure 18). Although a thorough 
parametric study has not been performed, it is believed that the critical Hartman number beyond 
which the circulation would be entirely suppressed at a Grashof number of 3000 is between 10 
and 15. 

CONCLUSIONS 

Using the explicit approach, the governing equations of magnetohydrodynamics were solved 
with high accuracy. The stability analysis for a sample system shows that if each individual system 
satisfies the stability conditions, the complete system is stable. Numerical examples including 
two- and three-dimensional Hartman flow were computed. Recirculating flow generated by 
thermally induced buoyancy was suppressed by the magnetic field. 

ACKNOWLEDGEMENTS 

The lead author would like to thank the Center for Cell Research at Penn State University for 
partially supporting this work and Mr. Robert Kunz for useful discussions. Computations were 
performed on the NAS facility at NASA Ames Research Center. Computing time was provided 
by Dr. Robert Stubbs of NASA Lewis Research Center. Graphics were produced on equipment 
donated by Apple Computer Co., Inc. 

REFERENCES 
1. E. D. Doss, G. S. Argyropoulos and S. T. Demetriades, ‘Two-dimensional flow inside MHD ducts with transverse 

2. L. A. Feldman and J. E. Burkhalter, ‘Numerical solutions of transient MHD phenomena’, AIAA J.,  17(3), 227-228, 

3. F. Grasso and C. G. Speziale, ‘Supersonic flow computations by two-equation turbulence modelling’, AIAA Paper 

4. R. F. Kunz and B. Lakshminarayana, ‘Computation of supersonic and low subsonic cascade flows using an explicit 
Navier-Stokes technique and k-.c turbulence model’, in M.-S. Lin (ed.), Proc. CFD Symp. in Aeropropulsion, NASA 
Lewis Research Center, Cleveland, OH, 24-26 April 1990; NASA CP-3078, pp. 163-201. 

5. A. Jeffrey, Magnetohydrodynamics, University Mathematical Texts 33, Oliver & Boyd, Edinburgh, 1966. 
6. S. Chandrasekhar, Hydrodynamic and Hydromognetic Stability, Dover, New York, 1961. 
7. A. Jameson, W. Schmidt and E. Turkel, ‘Numerical solutions of the Euler equations by finite volume methods using 

Runge-Kutta time-stepping scheme’, AIAA Paper 81-1259, Palo Alto, CA, June 1981. 
8. A. J. Chorin, ‘A numerical method for solving incompressible viscous flow problems’, J. Comput. Phys., 2, 12-26 

(1967). 
9. J. L. Steger and P. Kutler, ‘Implicit finite-difference procedure for the computation of vortex wakes’, AIAA J., l5(4), 

10. S. E. Rogers, D. Kwak and J. L. C. Chang, ‘INS3D-an incompressible Navier-Stokes code in generalized three- 

asymmetries’, AIAA J., l3(5), 545-546 (1975). 

(1979). 

89-19S1, 1989. 

581-590 (1977). 

dimensional coordinates’, NASA TM-100012, November 1987. 



936 S. LEE AND G. S. DULIKRAVICH 

11. D. Pan and S. Chakravarthy, ‘Unified formulation for incompressible flows’, AIAA Paper 89-0122,27th Aerospace 

12. S .  Lee and G. S. Dulikravich, ‘Performance analysis of DMR method for acceleration of iterative algorithms’, A l A A  

13. G. W. Sutton and A. Sherman, Engineering Magnetohydrodynamics, McGraw-Hill, New York, 1965, pp. 334-381. 
14. S. Lee, ‘Acceleration of iterative algorithms for Euler and Navier-Stokes equations’, Ph.D. Thesis, Department of 

Sciences Meeting, Reno, NV, 9-12 January 1989. 

Paper 91-0241, Aerospace Sciences Meeting, Reno, NV, 7-10 January 1991. 

Aerospace Engineering, The Pennsylvania State University, May 1990. 


